Sum of n, n², or n³ | Brilliant Math & Science Wiki (2024)

Sign up with Facebook or Sign up manually

Already have an account? Log in here.

Recommended Course

  • Algebra through Puzzles Supercharge your algebraic intuition and problem solving skills!

Wildan Bagus Wicaksono, Patrick Corn, Ameya Salankar, and

  • Christopher Williams
  • Pranshu Gaba
  • Kishlaya Jaiswal
  • Andres Gonzalez
  • Rishik Jain
  • Mahindra Jain
  • Munem Shahriar
  • Jongheun Lee
  • Mohammad Yasser
  • Jimin Khim

contributed

Sum of n, n², or n³ | Brilliant Math & Science Wiki (1)

The series \(\sum\limits_{k=1}^n k^a = 1^a + 2^a + 3^a + \cdots + n^a\) gives the sum of the \(a^\text{th}\) powers of the first \(n\) positive numbers, where \(a\) and \(n\) are positive integers. Each of these series can be calculated through a closed-form formula. The case \(a=1,n=100\) is famously said to have been solved by Gauss as a young schoolboy: given the tedious task of adding the first \(100\) positive integers, Gauss quickly used a formula to calculate the sum of \(5050.\)

The formulas for the first few values of \(a\) are as follows:

\[\begin{align}\sum_{k=1}^n k &= \frac{n(n+1)}2 \\\sum_{k=1}^n k^2 &= \frac{n(n+1)(2n+1)}6 \\\sum_{k=1}^n k^3 &= \frac{n^2(n+1)^2}4.\end{align}\]

Faulhaber's formula, which is derived below, provides a generalized formula to compute these sums for any value of \(a.\)

Manipulations of these sums yield useful results in areas including string theory, quantum mechanics, and complex numbers.

Contents

  • Sum of the First \(n\) Positive Integers
  • Sum of the Squares of the First \(n\) Positive Integers
  • Sum of the Cubes of the First \(n\) Positive Integers
  • Some Examples
  • Generalizations
  • Faulhaber's Formula
  • See Also

Sum of the First \(n\) Positive Integers

Let \(S_n = 1+2+3+4+\cdots +n = \displaystyle \sum_{k=1}^n k.\) The elementary trick for solving this equation (which Gauss is supposed to have used as a child) is a rearrangement of the sum as follows:

Sum of n, n², or n³ | Brilliant Math & Science Wiki (2)

\[\begin{eqnarray}S_n & = & 1 & + & 2 & + & 3 & + \cdots + & n \\S_n & = & n & + & n-1 & + & n-2 & + \cdots + & 1 .\\\end{eqnarray}\]

Grouping and adding the above two sums gives

\[\begin{eqnarray}2S_n & = & (1+n)+(2+n-1)+(3+n-2) + \cdots + (n+1) \\ & = & \underbrace{(n+1)+(n+1)+(n+1)+\cdots+(n+1)}_{n\ \text{times}} \\& = & n(n+1).\end{eqnarray}\]

Therefore,

\[S_n = \dfrac{n(n+1)}{2}.\]

Find the sum of the first \(100\) positive integers.

Plugging \(n=100\) in our equation,

\[1+2+3+4+\dots + 100 = \frac{100(101)}{2} = \frac{10100}{2},\]

which implies our final answer is 5050. \( _\square \)

Show that the sum of the first \(n\) positive odd integers is \(n^2.\)

There are several ways to solve this problem. One way is to view the sum as the sum of the first \(2n\) integers minus the sum of the first \(n\) even integers. The sum of the first \(n\) even integers is \(2\) times the sum of the first \(n\) integers, so putting this all together gives

\[\frac{2n(2n+1)}2 - 2\left( \frac{n(n+1)}2 \right) = n(2n+1)-n(n+1) = n^2.\]

Even more succinctly, the sum can be written as

\[\sum_{k=1}^n (2k-1) = 2\sum_{k=1}^n k - \sum_{k=1}^n 1 = 2\frac{n(n+1)}2 - n = n^2.\ _\square\]

In a similar vein to the previous exercise, here is another way of deriving the formula for the sum of the first \(n\) positive integers. Start with the binomial expansion of \((k-1)^2:\)

\[(k-1)^2 = k^2 - 2k + 1.\]

Rearrange the terms as below:

\[k^2-(k-1)^2 = 2k-1.\]

Now sum both sides:

\[\sum_{k=1}^n \big(k^2-(k-1)^2\big) = 2 \sum_{k=1}^n k - \sum_{k=1}^n 1.\]

The left sum telescopes: it equals \(n^2.\) The right side equals \(2S_n - n,\) which gives \(2S_n - n = n^2,\) so \(S_n = \frac{n(n+1)}2.\)

This technique generalizes to a computation of any particular power sum one might wish to compute.

Sum of the Squares of the First \(n\) Positive Integers

Continuing the idea from the previous section, start with the binomial expansion of \((k-1)^3:\)

\[(k-1)^3 = k^3 - 3k^2 + 3k - 1.\]

Rearrange the terms:

\[k^3-(k-1)^3=3k^2-3k+1.\]

As before, summing the left side from \(k=1\) to \(n\) yields \(n^3.\) This gives

\[\begin{align}n^3 &= 3 \left( \sum_{k=1}^n k^2 \right) - 3 \sum_{k=1}^n k + \sum_{k=1}^n 1 \\n^3 &= 3 \left( \sum_{k=1}^n k^2 \right) - 3 \frac{n(n+1)}2 + n \\3 \left( \sum_{k=1}^n k^2 \right) &= n^3 + 3 \frac{n(n+1)}2 - n \\\Rightarrow \sum_{k=1}^n k^2 &= \frac13 n^3 + \frac12 n^2 + \frac16 n \\&= \frac{n(n+1)(2n+1)}6.\end{align}\]

Find the sum of the squares of the first \(100\) positive integers.

Plugging in \(n=100,\)

\[1^2+2^2+3^2+4^2+\dots + 100^2 = \frac{100(101)(201)}{6} = \frac{2030100}{6} = 338350.\ _\square\]

Sum of the Cubes of the First \(n\) Positive Integers

Again, start with the binomial expansion of \((k-1)^4\) and rearrange the terms:

\[k^4-(k-1)^4=4k^3-6k^2+4k-1.\]

Sum from \(1\) to \(n\) to get

\[n^4 = 4 s_{3,n} - 6 s_{2,n} + 4 s_{1,n} - n.\]

Here \(s_{a,n}\) is the sum of the first \(n\) \(a^\text{th}\) powers. So

\[\begin{align}4s_{3,n} &= n^4 + 6 \frac{n(n+1)(2n+1)}6 - 4 \frac{n(n+1)}2 + n \\\\s_{3,n} &= \frac14 n^4 + \frac12 n^3 + \frac34 n^2 + \frac14 n - \frac12 n^2 - \frac12 n + \frac14 n \\\\s_{3,n} &= \frac14 n^4 + \frac12 n^3 + \frac14 n^2 \\\\&= \frac{n^2(n+1)^2}4.\end{align}\]

Find the sum of the cubes of the first \(200\) positive integers.

Plugging \(n=200\) in our equation,\[1^3+2^3+3^3+4^3+ 5^3 + 6^3 + 7^3 +8^3 \dots + 200^3 = \frac{200^2\big(201^2\big)}{4} = \frac{1616040000}{4} = 404010000.\ _\square\]

\[\large \displaystyle\sum_{n=1}^{10}n\big(1+n+n^2\big)= \, ? \]

Some Examples

Simplify

\[2 + 4 + 6 + \cdots + 2n.\]

We have

\[\begin{align}2+4+6+\cdots+2n&=\sum _{ i=1 }^{ n }{ 2i } \\ &=2(1+2+3+\cdots+n)\\ &=2\times \frac { n(n+1) }{ 2 } \\&=n(n+1).\ _\square\end{align}\]

Simplify

\[1+3+5+\cdots+(2n-1).\]

We have

\[\begin{align}1+3+5+\cdots+(2n-1)&=\sum _{ i=1 }^{ n }{ (2i-1) } \\&=\sum _{ i=1 }^{ n }{ 2i } -\sum _{ i=1 }^{ n }{ 1 } \\ &=2\sum _{ i=1 }^{ n }{ i } -n\\ &=2\times \frac { n(n+1) }{ 2 } -n\\ &=n(n+1)-n\\ &=n(n+1-1)\\ &={ n }^{ 2 }.\ _\square\end{align}\]

Simplify

\[2^2+4^2+6^2+\cdots+(2n)^2.\]

We have

\[\begin{align}2^2+4^2+6^2+\cdots+(2n)^2&=\sum_{i=1}^{n}(2i)^2\\&=\sum_{i=1}^{n}\big(2^2 i^2\big)\\ &=4\sum _{ i=1 }^{ n }{ { i }^{ 2 } } \\ &=4\cdot \frac { n(n+1)(2n+1) }{ 6 } \\ &=\frac { 2n(n+1)(2n+1) }{ 3 }.\ _\square\end{align} \]

Simplify

\[1^2+3^2+5^2+\cdots+(2n-1)^2.\]

We have

\[\begin{align}1^2+3^2+5^2+\cdots+(2n-1)^2&=\left(1^2+2^2+3^2+4^2+\cdots+(2n-1)^2+(2n)^2\right)-\left(2^2+4^2+6^2+\cdots+(2n)^2\right)\\&=\sum_{i=1}^{2n} i^2-\sum_{i=1}^{n}(2i)^2\\&=\frac{2n(2n+1)(4n+1)}{6}-\frac{2n(n+1)(2n+1)}{3}\\&=\frac{n(2n+1)\big((4n+1)-2(n+1)\big)}{3}\\&=\frac{n(2n-1)(2n+1)}{3}.\ _\square\end{align}\]

Generalizations

As in the previous section, let \(s_{a,n} = \sum\limits_{k=1}^n k^a.\) Then the relevant identity, derived in the same way from the binomial expansion, is

\[n^{a+1} = \binom{a+1}1 s_{a,n} - \binom{a+1}2 s_{a-1,n} + \binom{a+1}3 s_{a-2,n} - \cdots + (-1)^{a-1} \binom{a+1}{a} s_{1,n} + (-1)^a n.\]

This recursive identity gives a formula for \(s_{a,n}\) in terms of \(s_{b,n}\) for \(b < a.\) It is the basis of many inductive arguments. In particular, the first pattern that one notices after deriving \(s_{a,n}\) for \(a=1,2,3\) is the leading terms \(\frac12 n^2, \frac13 n^3, \frac14 n^4.\) Here is an easy argument that the pattern continues:

For a positive integer \(a,\) \(s_{a,n}\) is a polynomial of degree \(a+1\) in \(n.\) Its leading term is \(\frac1{a+1} n^{a+1}.\)

Induction. The statement is true for \(a=1,\) and now suppose it is true for all positive integers less than \(a.\) Then solve the above recurrence for \(s_{a,n}\) to get

\[s_{a,n} = \frac1{a+1} n^{a+1} + c_{a-1} s_{a-1,n} + c_{a-2} s_{a-2,n} + \cdots + c_1 s_{1,n} + c_0 n,\]

where the \(c_i\) are some rational numbers.

Now by the inductive hypothesis, all of the terms except for the first term are polynomials of degree \(\le a\) in \(n,\) so the statement follows. \(_\square\)

Note the analogy to the continuous version of the sum: the integral \(\int_0^n x^a \, dx = \frac1{a+1}n^{a+1}.\) The lower-degree terms can be viewed as error terms in the approximation of the area under the curve \(y=x^a\) by the rectangles of width \(1\) and height \(k^a.\)

Faulhaber's Formula

Having established that \(s_{a,n} = \frac1{a+1} n^{a+1} +\text{(lower terms)},\) the obvious question is whether there is an explicit expression for the lower terms. It turns out that the terms can be expressed quite concisely in terms of the Bernoulli numbers, as follows:

Faulhaber's Formula:

\[\sum_{k=1}^n k^a = \frac1{a+1} \sum_{j=0}^{a} (-1)^j \binom{a+1}{j} B_j n^{a+1-j}.\]

That is, if \(i=a+1-j\) is a positive integer, the coefficient of \(n^i\) in the polynomial expression for the sum is \(\dfrac{(-1)^{a+1-i}}{a+1} \binom{a+1}{i} B_{a+1-i}.\)

Show that \(\sum\limits_{k=1}^n k^a = \frac1{a+1} n^{a+1} + \frac12 n^a + (\text{lower terms}).\)

This can be read off directly from Faulhaber's formula: the \(j=0\) term is \(\frac1{a+1}n^{a+1},\) and the \(j=1\) term is

\[\frac1{a+1} (-1)^1 \binom{a+1}1 B_1 n^a,\]

and since \(B_1 = -\frac12,\) this simplifies to \(\frac12 n^a.\) \(_\square\)

To compute \(\sum\limits_{k=1}^n k^4\) using Faulhaber's formula, write

\[\sum_{k=1}^n k^4 = \frac15 \sum_{j=0}^4 (-1)^j \binom{5}{j} B_j n^{5-j}\]

and use \(B_0 = 1, B_1 = -\frac12, B_2 = \frac16, B_3 = 0, B_4 = -\frac1{30}\) to get

\[\sum_{k=1}^n k^4 = \frac15 \left( n^5 + \frac52 n^4 + \frac{10}6 n^3 + 0 n^2 - \frac16 n\right) = \frac15 n^5 + \frac12 n^4 + \frac13 n^3 - \frac16 n.\]

This happens to factor as

\[\sum_{k=1}^n k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}.\]

Note that the \((-1)^j\) sign only affects the term when \(j=1,\) because the odd Bernoulli numbers are zero except for \(B_1 = -\frac12.\)

The proof of the theorem is straightforward (and is omitted here); it can be done inductively via standard recurrences involving the Bernoulli numbers, or more elegantly via the generating function for the Bernoulli numbers.

See Also

  • Bernoulli Numbers

Cite as: Sum of n, n², or n³. Brilliant.org. Retrieved from https://brilliant.org/wiki/sum-of-n-n2-or-n3/

Sum of n, n², or n³ | Brilliant Math & Science Wiki (2024)

FAQs

What is n2 in math? ›

(n2) means the number of ways to choose a subset of size 2 from a set of size n; it's equal to n(n−1)2 n ( n − 1 ) 2 . So (n2)p ( n 2 ) p is just equal to n(n−1)p2 n ( n − 1 ) p 2 . This notation/concept is referred to as a “binomial coefficient”, incidentally, in case you wish to look up more about it. 1.

What is the summation of n=3? ›

It seems that the sum is always square, but what is even more remarkable is that the sum of the first n cubes, 13+23+... + n 3 = ( n ( n +1)/2)2, which is the square of the n th triangle number. For example, 13+23+... +103=(10×11/2)2=552 = 3025.

How to find the sum of n^2? ›

Sum of Squares Formulas and Proofs

If n consecutive natural numbers are 1, 2, 3, 4, …, n, then the sum of squared 'n' consecutive natural numbers is represented by 12 + 22 + 32 + … + n2.

What is the formula for n2? ›

Nitrogen gas has the chemical formula N2 which can be denoted by N≡N. It is categorized as one of the diatomic elements which are made up of two atoms of the same element joined by one or more covalent bonds because in the case of N2 also a triple covalent link connects the two nitrogen atoms.

What is the meaning of n2? ›

It is a diatomic nitrogen, a gas molecular entity and an elemental molecule.

What is n2 in physics? ›

n1 is the index of refraction of the first medium and n2 is the index of refraction of the second medium. Angles are measured from the normal, which is the line perpendicular to the interface.

What is ∑ called? ›

The symbol ∑ indicates summation and is used as a shorthand notation for the sum of terms that follow a pattern. For example, the sum of the first 4 squared integers, 12+22+32+42, follows a simple pattern: each term is of the form i2, and we add up values from i=1 to i=4.

What is n squared? ›

The usual notation for the square of a number n is not the product n × n, but the equivalent exponentiation n2, usually pronounced as "n squared". The name square number comes from the name of the shape. The unit of area is defined as the area of a unit square (1 × 1). Hence, a square with side length n has area n2.

Is summation just addition? ›

In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.

How to do infinite sums? ›

The formula for the sum of an infinite series is a/(1-r), where a is the first term in the series and r is the common ratio i.e. the number that each term is multiplied by to get the next term in the sequence. To find r, divide any term in the series by the prior term.

What does n mean in numbers? ›

Natural Numbers, Counting Numbers. The letter (N) is the symbol used to represent natural numbers. Natural numbers are also known as counting numbers, and they begin with the number 1 and continue to infinity (never ending), which is represented by three dots (...).

What is a sum in math? ›

In mathematics, the sum can be defined as the result or answer after adding two or more numbers or terms. Thus, the sum is a way of putting things together. In other words, the sum is the process of bringing two or more numbers together to produce a new result or total.

Does n2 2 exist? ›

It don't think that N22− can exist as a free species. N− is unstable. In other words, the electron affinity of nitrogen is negative. To create N22− you would need to bring together 2 negatively charged N− which are each already unstable due to their negative charge.

Is n2 a gas or liquid? ›

Nitrogen (N2) is a colorless, odorless and tasteless gas that makes up 78.09% (by volume) of the air we breathe. It is nonflammable and it will not support combustion. Nitrogen gas is slightly lighter than air and slightly soluble in water.

What is n2 equivalent to? ›

N2 National Certificate: NQF Level 3. N3 National Certificate: NQF Level 4. N4 National Certificate: NQF Level 5.

What does n2 mean in statistics? ›

n1 is the sample size of sample 1. x2 is the mean of sample 2. s2 is the standard deviation of sample 2. n2 is the sample size in sample 2.

What is n^2 in median? ›

In calculation, the median is the simple average of the n/2 -th and the (n/2 + 1) -th terms. As there are four observations (i.e. even number), the median is the simple average of the 2nd and 3rd lowest persons' wages. Therefore, Median = ½ (Person D's wage + Person C's wage)

Top Articles
10.2: Derivatives of Exponential Functions
Derivatives of Exponential Functions | Brilliant Math & Science Wiki
Katie Pavlich Bikini Photos
Gamevault Agent
Toyota Campers For Sale Craigslist
FFXIV Immortal Flames Hunting Log Guide
CKS is only available in the UK | NICE
Unlocking the Enigmatic Tonicamille: A Journey from Small Town to Social Media Stardom
Overzicht reviews voor 2Cheap.nl
Globe Position Fault Litter Robot
World Cup Soccer Wiki
Robert Malone é o inventor da vacina mRNA e está certo sobre vacinação de crianças #boato
Guilford County | NCpedia
Dr Manish Patel Mooresville Nc
Apus.edu Login
Urban Dictionary: hungolomghononoloughongous
Prosser Dam Fish Count
Jayah And Kimora Phone Number
10 Fun Things to Do in Elk Grove, CA | Explore Elk Grove
Evil Dead Rise - Everything You Need To Know
Craigslist Maui Garage Sale
Wgu Academy Phone Number
Aps Day Spa Evesham
Poe Str Stacking
Pasco Telestaff
Coomeet Premium Mod Apk For Pc
Home
Hdmovie2 Sbs
Kentuky Fried Chicken Near Me
Breckiehill Shower Cucumber
Wat is een hickmann?
Ticket To Paradise Showtimes Near Cinemark Mall Del Norte
Doctors of Optometry - Westchester Mall | Trusted Eye Doctors in White Plains, NY
Lacey Costco Gas Price
Yu-Gi-Oh Card Database
United E Gift Card
La Qua Brothers Funeral Home
Red Sox Starting Pitcher Tonight
Www.craigslist.com Syracuse Ny
Old Peterbilt For Sale Craigslist
Louisville Volleyball Team Leaks
Greater Keene Men's Softball
Taylor University Baseball Roster
Gregory (Five Nights at Freddy's)
Grand Valley State University Library Hours
Holzer Athena Portal
Hampton In And Suites Near Me
Stoughton Commuter Rail Schedule
Bedbathandbeyond Flemington Nj
Free Carnival-themed Google Slides & PowerPoint templates
Otter Bustr
Selly Medaline
Latest Posts
Article information

Author: Manual Maggio

Last Updated:

Views: 5883

Rating: 4.9 / 5 (49 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Manual Maggio

Birthday: 1998-01-20

Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

Phone: +577037762465

Job: Product Hospitality Supervisor

Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.